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Abstract Two-dimensional airfoil design problems provide a logical

and economical means to explore strategies that have the

Genetic algorithms are versatile optimization tools suitable for potential to improve the performance of basic GAs. A special

solving multi-disciplinary optimization problems in GA was designed by Zhu and Chan (1998) to deal specifically

aerodynamics where the design parameters may exhibit multi- with the geometrical aspects of the problem; namely the

modal or non-smooth variations. However, the fitness positions and connectivity of the line segments that make up

evaluation phase of the algorithms casts a large overhead on an airfoil profile. The method directly manipulates the

the computational requirement and is particularly acute in coordinates of the airfoil surface to effect favorable changes,

aerodynamic problems where time-consuming CFD methods and has been demonstrated to show better efficiency than a

are needed for evaluating performance. Methods and standard binary coded GA for a number of two-dimensional

strategies to improve the performance of basic genetic examples that deal with geometrical shapes. However, the

algorithms are important to enable the method to -be useful for overall computational requirement is still high and the present

complicated three-dimensional or multi-disciplinary work aims to explore methods to further improve the

problems. Two such methods are studied in the present work: performance.

micro genetic algorithms and artificial neural networks. Both
methods are applied to inverse and direct airfoil design Two methods to improve the performance of genetic

problems and the resulting improvement in efficiency is noted algorithms are studied in this paper, the first is the use of

and discussed, micro genetic algorithms (IiGAs) and the second is the
application of artificial neural networks (ANNs). The gtGA
strategy was derived by Goldberg (1989) and Krishnakumar

1 Introduction (1989) to explore the use of small population sizes in genetic
algorithm applications. Reeves (1993) also showed that for
binary coding, a small population size is sufficient to reach

Aerodynamic design problems in t ransonic regime are the entire search space by cross-over alone. With a small
characterized by multi-modal topology in the design population there will be rapid convergence to a possible sub-

parameter space with possibilities of non-smooth variations.

An example showing the multi-modal variations was optimal solution, and the effective use of IIGAs is to

constructed by Obayashi and Tsukahara (1997) who also repeatedly generate new population members as soon as a

pointed out that the presence of shock waves in transonic flow measure of convergence has been achieved in a cycle of GA

problems could introduce jump discontinuities in the design operation.

parameter space. The ability of genetic algorithms (GAs) tohandle non-smooth topology and overcome local critical The implementation of the jptGA concept is simple, and the
hande nn-soot toplog an ovrcom loal ritcal method has been demonstrated to yield marked improvement

points in its search for a global optimum makes the method method sen de -onstate o yiel marke ovementideal for use in aerospace design optimization, over conventional large-population GAs. The use of p.tGAs
can be found in Roy et al. (1997), Xiao and Yabe (1998),

Although the ease of implementing GAs makes the method Abu-Lebdeh and Benekohal (1999), Chang et al. (1999), and

attractive, the use of the algorithm is hampered by the large the references contained therein. All the studies cited used

number of fitness evaluations which is particularly costly for binary-coded chromosomes, with applications ranging from

aerodynamic design problems. For such problems process engineering to traffic scheduling. Although the range

computational fluid dynamics (CFD) is often needed to of application of g.GAs is becoming extensive, their

provide aerodynamic data for evaluating performance. Thus, applicability has yet to be explored fully, and is certainly
it is important to explore methods to improve the efficiency of needed for aerospace design problems where computational
GAs for on-going extension to three-dimensional applications requirement is enormous. Also there has not been much

and multi-disciplinary optimization (MDO). demonstration of jtGAs for problems that use real number
coding and our study provides information in this regard.

Paper presented at the RTO A VT Symposium on "Aerodynamic Design and Optimisation of Flight Vehicles in a
Concurrent Multi-Disciplinary Environment", held in Ottawa, Canada, 18-21 October 1999, and published in RTO MP-35.
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The second GA improvement strategy studied here is the use which are set to be 0.90 and 0.31 respectively for the two
of artificial neural networks to supplement detailed airfoils.
computational analysis to provide fitness information for GAs
to process. A properly trained ANN can provide fast and
inexpensive data to assist engineering designs as 3 Coding Representation of Airfoils
demonstrated by Batill and Swift (1993) and Rai and
Madavan (1998). The application of ANNs as approximate Genetic algorithms work on a coding of design variables
fitness evaluation tools for GAs, though suggested often, had representative of the problem; therefore, efficient and
seldom been put to practice. The combination of ANNs and effective parametric representation for airfoils is important for
GAs has been applied mainly for the construction of the success of the algorithm. For GA applications, airfoils
optimized neural networks through GA-based optimization should be represented by as small a parameter set as possible
techniques (Whitley (1995)). so the search space can be kept small. Also the smoothness of

the profile forming an airfoil should be controllable to avoid
Few applications of ANNs to GA processing have been inadmissible shapes.
reported. Podlena and Hendtlass (1998) used an ANN to
classify regions in the search space to guide a GA to direct its Although less amenable to theoretical analysis, real number
search to high fitness regions. While details were presented on coding is a preferred choice for airfoil design problems. For
applications to the standard test cases given by De Jong such problems, multiple design parameters are involved and
(1975), only a little information was given for a more these parameters take values over different real number
complex commercial application on aircraft trajectory ranges. The use of real number coding eliminates the needs
planning. for coding and decoding of design parameters and can provide

Lingireddy (1998) presents a use of an ANN to provide arbitrarily high resolution to the values of the parameters.

quantitative data for GA search. In the study for a two- Zhu and Chan (1998) formulated a genetic algorithm for
dimensional problem of aquifer parameter identification, GA airfoil design problems that used the coordinate points on the
coupled with finite element analysis (FEA) was found to be airfoil as control variables. Although the underlying
effective in estimating hydraulic conductivity but was geometrical nature of the algorithm allows for the design of
computationally expensive. A feed-forward neural network efficient GA operators for improved fitness evolution, the
was constructed for approximate function evaluation to save large number of design parameters causes difficulties for the
on computing cost. The simulation results show it was mapping of the search space. The coding scheme uses over
practical to use ANN and FEA within a genetic algorithm, but 100 control variables for a typical airfoil design study, and
the study did not give any quantitative indication of reduction this number is significantly large to present difficulties in
in computational effort, training an accurate ANN as observed by Tse and Chan

(1999).
To fulfill our second objective, an ANN is used as a

quantitative alternative to provide aerodynamic coefficients Open B-spline representation of airfoils is used in the present
for fitness evaluation so as to reduce the overall study as only a small number of control points are needed to
computational time of GA operation. The CFD results represent satisfactorily a typical airfoil profile. Other useful
obtained during part of the GA operation are used to train the advantages of B-spline are the smoothness of the profile can
ANN in order to construct the response surface representing be specified explicitly and the information on concavity is
the design parameter space. With the topology of the design readily available.
parameter space accurately represented, the fitness
information can be obtained readily. In open B-spline representations, the control nodes at the

beginning and terminating ends coincide with the end-points
of the resulting curve. Because the nose and tail points of an

2 Optimization Examples airfoil profile are fixed, the profile is split into a top half and a
bottom half and a B-spline curve is used to represent each

Two sets of numerical experiments are considered. The first is half.
an inverse design problem where a target pressure distribution
around an airfoil is specified and the airfoil shape is obtained To fit a B-spline curve to a prescribed profile, the order and
by a GA operation to produce a profile that gives the desired number of nodes for the B-spline are specified first and then
pressure distribution. The second is a drag minimization the resulting coordinates of the nodes are determined by a
problem with the constraint that the lift is fixed at a specified least square solution method. The B-spline fitting to the
value. NACA 64A410 airfoil is shown in Figure 1. The order of the

B-spline curve is six and a total of 10 control nodes are
The airfoil is assumed to operate in the transonic regime at specified to fit each of the top and bottom profiles. A smaller
Mach number 0.8 and angle of attack of 1.25'. For the first number of B-spline nodes could also yield satisfactory results,
experiment the target pressure distribution is that of the but no effort was made to reduce the number of control nodes
NACA 0012 airfoil, and the NACA 64A410 is used to derive to an optimum. Details of the theory and numerical algorithms
the starting airfoil samples. For the second experiment, both are presented in Rogers and Adams (1990).
NACA 64A410 and NACA 0012 are modified to reduce the
drag coefficient CD at fixed values of the lift coefficient CL
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4 Genetic Algorithm Operation that describes one side of an airfoil, with BI and B 10 being the
fixed nodes at the leading and trailing edges, respectively, as

Each B-spline control node is considered a gene and the set of illustrated in Figure 2. For a gene chosen to undergo mutation

ordered control nodes describing a complete airfoil profile is (B5 in Figure 2), its value will be altered by an amount (Ax,

considered a chromosome for GA operation. In subsequent Ay) where

discussion the fitness of a chromosome refers to the
aerodynamic performance of an airfoil profile. Manipulation Ax = tx Ax
of the locations of the control nodes to obtain an optimal
airfoil is the goal of GA operation and the various Ay =ry Aymax
components of genetic operations are described in the
following sections. where r, and ry c (-0.5, 0.5) are random numbers distributed

uniformly within the range. In this study AXmax and AYmax are
4.1 Fitness Evaluation both set to be 1% of chord.

Fitness evaluation is the basis for the GA search and selection As the above changes are applied to the selected control node,
procedure and is usually the most costly part of the algorithm. its neighboring control nodes are also adjusted so that the
An Euler flow solver is used as the primary means for change in slope and curvature of the airfoil profile will not be
obtaining aerodynamic information. This information is made too abrupt. The changes in the neighboring nodes (B2 ... B4,
available to train an ANN which then acts as a source for B6 ... B9) are done in proportion to the relative position from
aerodynamic data for evaluating fitness. Detailed discussion the node where the main change is effected as illustrated in
of the CFD method and the implementation of ANN is Figure 2. The two end nodes B1 and B10 are left unchanged.
discussed in following sections.

As noted in Obayashi et al. (1998) the mutation probability
The numerical values of the fitness are also used to for a GA using real number coding should be set at a higher
differentiate admissible profiles from inadmissible ones. To value than when binary coding is used. The reason is that in
maintain physical realism, the airfoils should not have too binary coding a change in a single bit can effect significant
many inflection points where concavity changes sign. If an change in the value of the design variable, but in real number
airfoil exhibits too many inflection points, the fitness for that coding a similar change has a lesser effect. Thus a higher
airfoil is assigned a very low value to ensure it has a low mutation probability is justified as a means to enable the
chance of surviving the genetic algorithm. algorithm to search the design space thoroughly. The value of

mutation probability is set to be 0.8 and lower values give
The fitness values for a generation of chromosomes are degraded performance.
ranked and scaled linearly and uniformly. This scaling is
necessary to prevent high fitness chromosomes from
becoming overly dominant. 5 Micro GA Strategy

4.2 Selection and Population Replacement As discussed earlier, although ltGAs have been demonstrated

to provide faster convergence than regular GAs when applied
Parents are chosen based on the Roulette wheel method where to a range of engineering problems, their use has still been
the probability of a chromosome being chosen is proportional quite limited and apparently has not been tried on resource-
to its fractional fitness value. Each pair of parents produces intensive aerospace optimization problems. An objective of
one offspring, and after a new population is produced, their this study is to examine the applicability of g.GAs to
fitness is compared to that of the parent generation and the aerospace design problems where any reduction inbestomembersereiassignedetsbewtheenewygneration.nThi
best members are assigned to be the new generation. This computational effort would translate into significant saving in
elitist strategy has been observed to yield good performance. computer resources.

4.3 Cross-over The efficiency of gGAs results from the use of small

populations which leads to more rapid convergence and the
A simple one-point cross-over scheme is applied. Given two frequent re-generation of random population members to
parental chromosomes, an arbitrary cutting point is chosen ensure diversity during the search process. In this study, the
where the genes positioned after the cutting point are g.tGA is implemented as follows. One cycle of g.tGA consists
interchanged. The smoothness of the resulting airfoil profiles of evolving a small population of chromosomes of size npsize
is guaranteed by the B-spline formulation. The probability of based on the GA operations described earlier for a fixed
cross-over is set at 80%, and smaller values tend to worsen number of generations ngen. At the end of this cycle, the
the performance. chromosome with the highest fitness is identified. Then

(npsize - 1) chromosomes are generated based on mutating
4.4 Mutation the fittest chromosome, and these newly generated

chromosomes, together with the fittest individual from the
Mutation is carried out by randomly selecting a gene and then previous g.GA cycle, constitute a new population ready for the
changing its value by a random amount chosen within a next stage of gGA operation. This cycling process continues
prescribed range. Let {B1. .. B 10) be part of a chromosome until a desired level of performance criterion is achieved.
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6 Methods for Evaluating Fitness become training cases for the ANN, and the number of
training cases is the number of chromosomes in a population.

Fitness evaluation through CFD solution is accurate but
costly. Hence, supplementary ANN prediction is exploited to Next, for each of the generations labeled igen-ann, the

provide the required fitness data. Details of the two methods aerodynamic data for the chromosomes are obtained by the

are described below, trained ANN. Because ANN results have lower fidelity
compared to CFD predictions, the ANN results need scrutiny.

6.1 Direct CFD Solution Let finax be the maximum fitness predicted by the CFD
method; then if the ANN prediction for a chromosome has
fitness greater than 90% of fmax, the fitness is re-calculated

An efficient CFD solver is needed to yield aerodynamic data uing CFD.

quickly for GA processing. A two-dimensional Euler flow

solver is used as a compromise between physical realism and
computational efficiency. 7 Neural Network Construction and

Central differencing scheme with second and fourth-order Performance
artificial dissipation terms is used. A 5-stage Runge-Kutta
explicit scheme is used for time marching and the dissipation The ANN used in this study is a single layer version of the
terms are evaluated at the 1st, 3rd and 5th stages. The optimal Multilayer Perceptron network as shown in Figure 3. The
values for the coefficients used in the Runge-Kutta scheme neural network is designed to take the (xy) coordinates of the
are selected according to the suggestions by Jameson et al. B-spline control nodes as input and the pressure values around
(1981). To accelerate convergence a 3-level W-cycle the airfoil surface are the output. Since there are 20 B-spline
multigrid combined with implicit residual smoothing is used. control nodes for an airfoil profile, the number of input nodes

is 40 to account for the x and y values. Because 160 grid
For the calculation, an 0-type mesh is constructed around the locations are defined in the CFD calculation for the surface
airfoil and far field boundaries are set at 50 chords away to pressure, the number of output nodes is the same at 160. Ten
minimize the boundary influence on the solution. There are neurons are used in the hidden layer and numerical
160 grid cells distributed around the airfoil and 32 cells along experimentation shows that the ANN results are not too
the direction normal to the airfoil surface. The multigrid sensitive to the number of hidden layer neurons used.
solver used provides very fast convergence. Details on the
solver performance can be found in Zhu and Chan (1998). The training of the ANN is done by the well-known

backpropagation algorithm. Techniques such as appropriate
6.2 ANN-CFD Coupled Fitness Evaluation scaling of the input and output signals as suggested in Haykin

(1994) are applied to accelerate the convergence.
An important consequence of the fact that a GA only needs
function values during the optimization search is that the When an ANN is used within a genetic algorithm, the training
method can tolerate approximate function evaluation more of the ANN is continued for the entire duration of the GA
readily than gradient-based methods. Therefore, as stated in operation. The weights obtained from one set of training data
Periaux et al. (1995), GAs are robust with respect to noise and are kept and are used as initial values to train the next set of
accommodate well with less precise solutions. Additional data. This method reduces the training errors for a fixed
robustness also results from the condition that convergence of amount of training epochs and enables a more comprehensive
the algorithm relies on the entire population and not on a construction of the response surface for the search space.
single individual. This robustness quality could be exploited
with the help of ANNs, which can construct an accurate Because the CFD flow solver is very efficient for the current
response surface for the search space. applications, the training time required for the ANN becomes

the bottleneck of the computational resource. Upon some
Applications of ANNs as response surfaces for aerodynamic experimentation, it was decided that 1000 epochs will be
data estimation and extraction have been reported by Chan implemented for the neural network training. The choice
and Zhu (1999) and Greenman and Roth (1999). The results represents a compromise between accuracy and computing
indicate that a suitably trained ANN can provide accurate time requirement. Typical prediction results are displayed in
nonlinear interpolation for aerodynamic data. Figures 4 and 5, which show the surface pressure distribution

for two airfoils obtained during the course of p.GA operation.
The coupling between ANN and CFD for fitness evaluation
proceeds as follows. First, specify those generations as igen- In general, the ANN predictions are quantitatively reliable,
cfd where fitness information is obtained by the direct CFD with the shock jump magnitude and position predicted quite
method, and those other generations as igen-ann where accurately for the case shown in Figure 4, but the position was
approximate ANN evaluation is used. For each of the a bit off for the case represented in Figure 5. For the results in
generations labeled igen-cfd, CFD is used for fitness Figure 4, the CFD method gives CD to be 0.082 while the
evaluation and the results are stored for training the ANN. ANN method gives 0.077, an error of 6.1%. For CL , CFD
ANN training is commenced as soon as the CFD evaluation gives 0.93 while ANN gives 0.89, an error of 4.3%. For the
phase is over. Data for the whole generation of chromosomes results in Figure 5, the CFD method gives CD to be 0.078

while the ANN method gives 0.069, an error of 12%. For CL,
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CFD gives 0.92 while ANN gives 0.84, an error of 8.7%. This solutions are needed. The case with ngen = 20 does not
range of accuracy represents what typically can be expected provide any performance improvement. For the rest of this
from the ANN predictions. Compared to the results presented study, the base case parameters are used because of the better
in Tse and Chan (1999) where airfoil coordinates were used performance when sufficient GA processing is allowed.
as design variables, the training time for the ANN is now
shorter and the accuracy is higher. Comparison between piGA and GA

The significant improvement in fitness evaluation of g.GA
8 Results of Numerical Experiments over GA is demonstrated in Figure 7. In the example, gtGA is

operated for 100 cycles and the GA for 250 generations,
For the numerical experiments, all the cases are executed for making the number of fitness evaluation or CFD solver calls
approximately 10000 fitness evaluations and the resulting to be about 10000 for both cases. Note that the actual CFD
performance of different strategies are compared based on the solver calls are slightly less than 10000 because some
amount of CFD solver calls. For the cases where regular GA chromosomes generated do not satisfy the concavity
is used, a population size of 40 is chosen and 250 generations constraints as stated earlier and are rejected. The superiority
are computed to attain the desired number of fitness of p.GA is evident: the ItGA gives higher fitness prediction
evaluations. The GA parameters are kept fixed in all cases. during the entire course of the optimization process.

8.1 Pressure Distribution Matching Results with ANN Coupling

A target pressure distribution is given as Pi, i = 1, 2,... Ng; Figure 8 shows the fitness performance when ANN is used for

where Ng = 160 is the number of surface grid cells around the part of the fitness evaluation. The implementation of ANN is
as follow: during a cycle of pgGA with ngen = 10, the

airfoil. Let Pi be the pressure distribution around an airfoil aerodynamic data for the first five generations are calculated

design candidate, the goal is to minimize the following with CFD and the results are used to train the ANN. For the
objective function obj: sixth generation CFD is also used but the data are for

validating the ANN and not for training. For the remaining

1 Ng four generations the ANN is solely responsible for providing
obj g- l(Pi -1)2 aerodynamic data.

Ng i=1

The performance result is plotted with CFD solver calls alone,
The fitness function used in GA processing is defined as the with the computational effort of ANN training not
reciprocal of obj. represented. The purpose is to highlight the computational

saving achieved by reducing the overhead on the CFD solver.
8.1.1 Performance Comparison For the particular type of problems under study and the

particular flow solver used, the CPU time for calculating one

Different Parameters for tGA airfoil is about 3.9 seconds on an SGI Octane computer. In
contrast, the CPU time for 1000 epochs of ANN training is

A parametric study is made to vary the values of npsize and about 7.4 seconds, almost twice that of the CFD calculation.

ngen for gGA operation. The case npsize = 10 and ngen = 10 However, for more complicated three-dimensional
is chosen as the base case. The case npsize = 5 and ngen = 10 applications, the amount of CFD solver usage would dominateis hosn a th bae cse.Th cae nsiz = an ngn =10 the CPU time consumption.
is done to examine the effect of reducing the population size.

Following the work by Krishnakumar (1989), most Figure 9 illustrates the benefit of using a larger training set by
applications with tGA use a population size of 5, usually comparing the case with 4 generations of data available for
without much investigation. training to that with 5 generations. Although the

The work by Abu-Lebdeh and Benekohal (1999) shows that computational requirement is slightly higher for the latter
mid-sized populations (npsize between 9 and 15) consistently case, a larger training set could give better definition for the

exhibited lower internal variability, defined as the variation in underlying response surface and the advantage is reflected in

fitness value caused by changes in the initial population. the resulting improvement in the fitness evaluation.

Hence, a comparison of the effect of different npsize is
desirable. In addition, the case npsize = 10 and ngen = 20 is 8.1.2 Inverse Design Results
tried to observe any changes in the fitness performance whenabettried tonerveanychisgestablished fithineach perfmancle. w Figure 10 shows the pressure distribution for the target design
a better convergence is established within each gGA cycle. (NACA 0012) and the initial design (NACA 64A410). The

Results of the parametric study are shown in Figure 6. It is of transformation of one profile to the other effects readily as

interest to observe that for the case npsize = 5, the initial indicated by the fitness results. The final profile obtained by

performance is far superior to the other two cases, but the the gGA is very close to the desired profile, as shown in

performance levels off after the initial stage. This shows it is Figure 11.

indeed favorable to use npsize = 5 in p.GA operation,
especially for dynamical modeling problems where real-time
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8.2 Drag Minimization Studies 9 Conclusion

For drag minimization at fixed lift, the objective function is The examples shown suggest micro genetic algorithms can
defined as work well for problems that use real number coding. The

performance of micro genetic algorithms is consistently better

obj = CD + /3. (CL - C ) 2 than regular genetic algorithms, although the improvement is
more striking for some cases than others. With plenty of GA
processing, the use of mid-sized populations yields higher

where the constraint CL =C* has been incorporated by a fitness performance, but for solving real-time dynamical

penalty function formulation with 80 being the penalty problems, a small population size appears to be more
coefficient, chosen to be 10. The aim is to minimize obj and beneficial.

the GA fitness function is defined as obJ-l. The value for C� The artificial neural network constructed in this study

is 0.90 for the NACA 64A410 case and 0.31 for the NACA performs well for the prediction of the surface pressure
0012 case. distribution. The use of B-spline control nodes as design

variables instead of airfoil coordinates leads to a smaller
8.2.1 NACA 64A410 network which enhances the performance, both for reducing

the time required to train the network and for reducing the
Figure 12 shows the performance of various strategies for the errors associated with the prediction. The good quantitative
calculation starting with the NACA 64A410. Again .tGA comparison indicates that ANN can realistically replace some
performs better than the regular large population GA, but the of the solver calls in aerodynamic design applications.
improvement is not as marked as in the previous example.
When ANN is used, the performance is slightly better. Figure Within a genetic algorithm, the use of ANNs can reduce the
13 illustrates again that it is beneficial to use a larger training amount of CFD solver calls needed to achieve the same level
set despite the slightly higher ANN training overhead, of fitness performance. This saving of solver calls is essential

for further applications of genetic algorithms to design
The Mach contours of the original NACA 64A410 and the problems under more complex conditions such as three-
ItGA optimized airfoil are shown in Figures 14 and 15 dimensionality, more complicated flow physics, and
respectively. The airfoil designed by the ltGA has CL = 0.91 integration with other disciplines.
and CD = 0.0056, a mere 7.4% of 0.076, the CD value for
NACA 64A410.
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Figure 1: B-spline representation of the NACA 64A410

airfoil; 20 B-spline nodes, 6 th order B-spline curve, vertical
scale expanded. 0.5
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y I B 8 Figure 4: Pressure distribution prediction, CFD vs. ANN
B2Bg4 B5 B6 B B9" results; CDerror=6.1%, CLerror=4.3%.
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Figure 2: Schematic drawing showing the effect of mutation -1.5 CFD Prediction

at the node B5 and the subsequent smoothing.
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Figure 5: Pressure distribution prediction, CFD vs. ANN
Figure 3: Schematic layout of a Multilayer Perceptron ANN. results; CD error = 12%, CL error = 8.7%.
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Figure 6: Performance comparison for p.GA using various Figure 9: Comparison showing more ANN training sets can
parameters. be beneficial.
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Figure 10: Surface pressure distribution; NACA 64A410 is

1100 used as the initial distribution, NACA 0012 is the target.
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Figure 11: Results of the inverse design optimization
Figure 8: Performance comparison when ANN is used in showing the initial profile, the target profile and the g.GA

result, vertical scale expanded.
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Figure 12: Performance comparison for the NACA 64A410 Figure 15: Mach number distribution for the p.GA optimized
airfoil drag minimization study. profile.
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Figure 13: Performance comparison showing the benefit of -1.6
more training per gtGA cycle.
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Figure 17: Surface pressure distribution for the initial NACA
Figure 14: Mach number distribution for the NACA 64A410. 64A410 and the tGA optimized profile.
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Figure 18: Performance comparison for the NACA 0012
airfoil drag minimization study.
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Figure 19: Mach number distribution for the NACA 0012. Figure 22: Surface pressure distribution for the initial NACA
0012 and the gGA optimized profile.

Figure 20: Mach number distribution for the gGA optimized
profile.


